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Corrigendum

Exact resolution method for general 1D polynomial Schrödinger equation
A Voros 1999 J. Phys. A: Math. Gen. 32 5993–6007

A few intermediate statements in this work (and also in reference [16] therein) are mutually
inconsistent as they stand, and can be repaired as follows (keeping to the original equation
numbers). They concern the integral

Iq(s, λ)
def=

∫ +∞

q

(V (q ′) + λ)−s+1/2 dq ′ (12)

V (q) = + qN + v1q
N−1 + v2q

N−2 + · · · + vN−1q

for which we overlooked some of the effects induced by a pole at s = 0.
We first correct a misprint in the expansion (16) and amend its notation, as

(V (q) + λ)−s+1/2 ∼
∑
σ

βσ (s)q
σ−Ns for q → +∞

(
σ = N

2
,
N

2
− 1, · · ·

)
(16′)

(the βσ also depend on the parameters (vj , λ), but this may remain implied). The
inconsistencies then arise in the fully generic situation where β−1(s) �≡ 0.

We selected a recessive solutionψλ(q) of the Schrödinger equation, normalized according
to its definition (11)–(12) through a symbolically defined integral,

I(q, λ) =
∫ +∞

q

(V (q ′) + λ)1/2 dq ′.

However, we switched between three specifications of I(q, λ) which we now distinguish by
subscripts:

I(0)(q, λ) = finite part of Iq(s, λ)s→0 (15)

I(1)(q, λ) ∼ −
∑
σ �=0

βσ
qσ+1

σ + 1
− β−1 log q for q → +∞ (17)

and

I(2)(0, λ) = −1

2
[∂sZcl(s, λ)]s=0

I(2)(q, λ) = I(2)(0, λ)−
∫ q

0
(V (q ′) + λ)1/2 dq ′.

(26)

We implied I(0) = I(1) = I(2) from the case β−1(s) ≡ 0 where that coincidence occurs;
instead, the most general relationship involves additive constants, obtainable by explicitly
computing suitable finite parts:

I(0) +
2(1 − log 2)

N
β−1(0) = I(1) − 2 log 2

N
β−1(0) +

1

N
∂s

[
β−1(s)

1 − 2s

]
s=0

= I(2). (∗)
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Thus, the factor eI(q,λ) within the solution ψλ(q) retained several normalizations in
full generality, and, essentially: ψλ(q) obeys the (Sibuya) asymptotic formula (19) under

I(q, λ) def= I(1)(q, λ), whereas it obeys the basic identities (35) under I(q, λ) def= I(2)(q, λ)
(while I(0) becomes useless).

Conversion factors deduced from equation (∗) now allow consistent reformulations.
At the same time, the quantity ψλ(q) never served in isolation in this work whose only

cornerstone is the Wronskian of the pair of solutions (ψλ, ψ
[1]
λ ), which is insensitive to this

particular ambiguity simply because these two solutions carry opposite coefficients β−1(s).
Therefore, the main core of our article remains unaffected, especially the main functional
relation (40) and all derived results.

By contrast, further uses of the exact quantization formalism (cf. [1]) are seriously
compromised if those inconsistencies are not cured, and we consequently apologise to readers
for this oversight.
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