Exact resolution method for general 1D polynomial Schrödinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 335783
(http://iopscience.iop.org/0305-4470/33/32/501)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

Corrigendum

Exact resolution method for general 1D polynomial Schrödinger equation

A Voros 1999 J. Phys. A: Math. Gen. 32 5993-6007

A few intermediate statements in this work (and also in reference [16] therein) are mutually inconsistent as they stand, and can be repaired as follows (keeping to the original equation numbers). They concern the integral

$$
\begin{align*}
& I_{q}(s, \lambda) \stackrel{\text { def }}{=} \int_{q}^{+\infty}\left(V\left(q^{\prime}\right)+\lambda\right)^{-s+1 / 2} \mathrm{~d} q^{\prime} \tag{12}\\
& V(q)=+q^{N}+v_{1} q^{N-1}+v_{2} q^{N-2}+\cdots+v_{N-1} q
\end{align*}
$$

for which we overlooked some of the effects induced by a pole at $s=0$.
We first correct a misprint in the expansion (16) and amend its notation, as
$(V(q)+\lambda)^{-s+1 / 2} \sim \sum_{\sigma} \beta_{\sigma}(s) q^{\sigma-N s} \quad$ for $q \rightarrow+\infty \quad\left(\sigma=\frac{N}{2}, \frac{N}{2}-1, \cdots\right)$
(the β_{σ} also depend on the parameters $\left(v_{j}, \lambda\right)$, but this may remain implied). The inconsistencies then arise in the fully generic situation where $\beta_{-1}(s) \not \equiv 0$.

We selected a recessive solution $\psi_{\lambda}(q)$ of the Schrödinger equation, normalized according to its definition (11)-(12) through a symbolically defined integral,

$$
\mathcal{I}(q, \lambda)=\int_{q}^{+\infty}\left(V\left(q^{\prime}\right)+\lambda\right)^{1 / 2} \mathrm{~d} q^{\prime}
$$

However, we switched between three specifications of $\mathcal{I}(q, \lambda)$ which we now distinguish by subscripts:

$$
\begin{align*}
& \mathcal{I}_{(0)}(q, \lambda)=\text { finite part of } I_{q}(s, \lambda)_{s \rightarrow 0} \tag{15}\\
& \mathcal{I}_{(1)}(q, \lambda) \sim-\sum_{\sigma \neq 0} \beta_{\sigma} \frac{q^{\sigma+1}}{\sigma+1}-\beta_{-1} \log q \quad \text { for } q \rightarrow+\infty \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{I}_{(2)}(0, \lambda)=-\frac{1}{2}\left[\partial_{s} Z_{\mathrm{cl}}(s, \lambda)\right]_{s=0} \\
& \mathcal{I}_{(2)}(q, \lambda)=\mathcal{I}_{(2)}(0, \lambda)-\int_{0}^{q}\left(V\left(q^{\prime}\right)+\lambda\right)^{1 / 2} \mathrm{~d} q^{\prime} \tag{26}
\end{align*}
$$

We implied $\mathcal{I}_{(0)}=\mathcal{I}_{(1)}=\mathcal{I}_{(2)}$ from the case $\beta_{-1}(s) \equiv 0$ where that coincidence occurs; instead, the most general relationship involves additive constants, obtainable by explicitly computing suitable finite parts:
$\mathcal{I}_{(0)}+\frac{2(1-\log 2)}{N} \beta_{-1}(0)=\mathcal{I}_{(1)}-\frac{2 \log 2}{N} \beta_{-1}(0)+\frac{1}{N} \partial_{s}\left[\frac{\beta_{-1}(s)}{1-2 s}\right]_{s=0}=\mathcal{I}_{(2)}$.

Thus, the factor $\mathrm{e}^{\mathcal{I}(q, \lambda)}$ within the solution $\psi_{\lambda}(q)$ retained several normalizations in full generality, and, essentially: $\psi_{\lambda}(q)$ obeys the (Sibuya) asymptotic formula (19) under $\mathcal{I}(q, \lambda) \stackrel{\text { def }}{=} \mathcal{I}_{(1)}(q, \lambda)$, whereas it obeys the basic identities (35) under $\mathcal{I}(q, \lambda) \stackrel{\text { def }}{=} \mathcal{I}_{(2)}(q, \lambda)$ (while $\mathcal{I}_{(0)}$ becomes useless).

Conversion factors deduced from equation $(*)$ now allow consistent reformulations.
At the same time, the quantity $\psi_{\lambda}(q)$ never served in isolation in this work whose only cornerstone is the Wronskian of the pair of solutions $\left(\psi_{\lambda}, \psi_{\lambda}^{[1]}\right)$, which is insensitive to this particular ambiguity simply because these two solutions carry opposite coefficients $\beta_{-1}(s)$. Therefore, the main core of our article remains unaffected, especially the main functional relation (40) and all derived results.

By contrast, further uses of the exact quantization formalism (cf. [1]) are seriously compromised if those inconsistencies are not cured, and we consequently apologise to readers for this oversight.

Reference

[1] Voros A 2000 Exercises in exact quantization J. Phys. A: Math. Gen. 33 at press
(Voros A 2000 Preprint math-ph/0005029)

